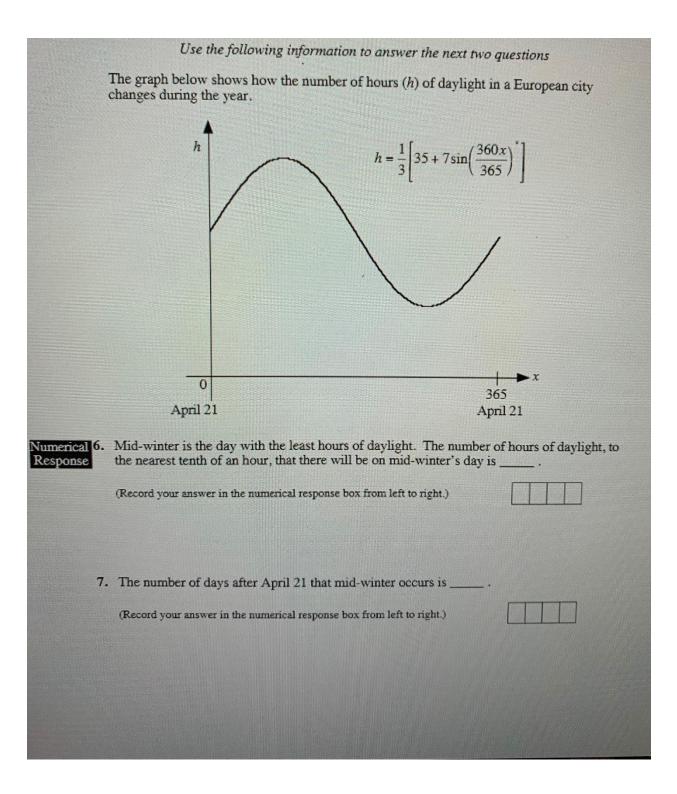
Lesson 9 – Assigned Questions

Assignment

1. The alarm in a noisy factory is a siren whose volume, V decibels, fluctuates so that t seconds after starting, the volume is given by the function $V(t) = 18 \sin \frac{\pi}{15}t + 60$.

a) What are the maximum and minimum volumes of the siren?


b) Determine the period of the function.

c) Write a suitable window which can be used to display the graph of the function.

- d) After how many seconds, to the nearest tenth, does the volume first reach 70 decibels?
- e) The background noise level in the factory is 45 decibels. Between which times, to the nearest tenth of a second, in the first cycle is the alarm siren at a lower level than the background noise?
- f) For what percentage, to the nearest per cent, of each cycle is the alarm siren audible over the background factory noise?

- 3. The height of a tidal wave approaching the face of the cliff on an island is represented by the equation $h(t) = 7.5 \cos\left(\frac{2\pi}{9.5}t\right)$ where h(t) is the height, in metres, of the wave above normal sea level t minutes after the wave strikes the cliff.
 - a) What are the maximum and minimum heights of the wave relative to normal sea level?
 - b) What is the period of the function?
 - c) How high, to the nearest tenth of a metre, will the wave be, relative to normal sea level, one minute after striking the cliff?
 - d) Normal sea level is 6 metres at the base of the cliff.i) For what values of h would the sea bed be exposed?
 - ii) How long, to the nearest tenth of a minute, after the wave strikes the cliff does it take for the sea bed to be exposed?

iii)For how long, to the nearest tenth of a minute, is the sea bed exposed?

An	ISW	er Key	requiper minimpediat en a chainspread.
1.		max = 78 dB, min = 42 dB, 2.8 s	b) 30 s c) x: [0, 40, 5] y: [30, 100, 10] answers may vary e) 19.7 s - 25.3 s f) 81%
2.	a)	2369 km north	b) 3765 km north c) 35.3 minutes
3.		max = 7.5 m, min = -7.5 m i) $h \le -6$ ii) 3.8 min	b) 9.5 min c) 5.9 m iii) 1.9 min
4.	a)	12 h b) 7.9 h	
5.	b)		aph down 0.3 units. If the graph falls below the t axis, the reservoir will ine $y = 0.3$. If the line intersects the graph, the reservoir will run dry. 014
6.		9.3	7. 2 7 4