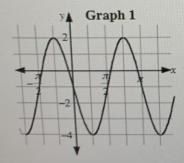
Lesson 8 – Assigned Questions

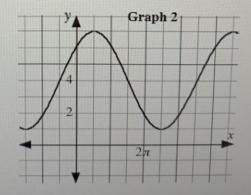
Assignment

1. Determine the amplitude, period, horizontal phase shift, and the vertical displacement for each function.

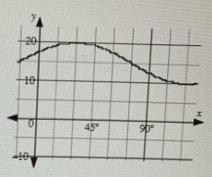
a)
$$y = \cos\left(x - \frac{\pi}{4}\right) + 3$$
 b) $y = 3\cos\frac{1}{2}\left(x - \frac{\pi}{2}\right)$ **c)** $y = 3\cos\frac{1}{2}x - \frac{\pi}{2}$

b)
$$y = 3 \cos \frac{1}{2} \left(x - \frac{\pi}{2} \right)$$

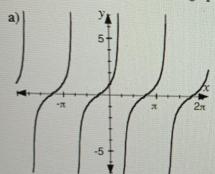

c)
$$y = 3 \cos \frac{1}{2}x - \frac{\pi}{2}$$

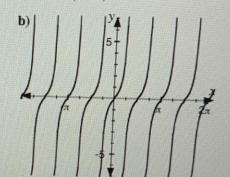

d)
$$y = \sin\left(4x - \frac{\pi}{2}\right)$$

e)
$$y = -2\cos 3(x - 45^\circ) + 4$$


d)
$$y = \sin\left(4x - \frac{\pi}{2}\right)$$
 e) $y = -2\cos 3(x - 45^\circ) + 4$ **f**) $y = 7\sin\left(\frac{1}{4}x + 20^\circ\right) - 1$

- 2. a) Determine the equation of a sine function that has a vertical displacement 3 units up, a horizontal phase shift of 60° to the left, a period of 210° and an amplitude of 4.
 - b) Determine the equation of a cosine function with a vertical displacement 5 units down, a horizontal phase shift of $\frac{2\pi}{3}$ radians to the right, a period of $\frac{5\pi}{4}$ and an amplitude of 3.
 - 3. Graphs 1 and 2 each represent the graphs of trigonometric functions.
 - a) Assuming a minimum possible phase shift, write the equation of each graph in the form $y = a \sin[b(x-c)] + d$ if: i) a > 0 ii) a < 0





5. The sine graph shown has a maximum value of 20 and a minimum value of 10. If the graph has a minimum possible phase shift, determine the equation of the graph in the form $y = a \sin [b(x - c)] + d$ with a > 0.

6. Determine the equation of each graph in the form $y = \tan b(x - c)$.

7. Determine the range of the functions represented below.

$$a) y = 2 \sin x - 2$$

b)
$$y = 3 \cos \frac{1}{2} \left(x - \frac{\pi}{2} \right) + 1$$

c)
$$y = -\frac{1}{2}\cos 4(x - \pi) - 3$$

d)
$$y = a \sin [b(x - c)] + d$$
, where $a > 0$

tiple 8. Which of the following graphs has the same x-intercepts as the graph of $y = \cos x$?

A.
$$y = \cos 4x$$

B.
$$y = 4 \cos x$$

C.
$$y = \cos x + 4$$

D.
$$y = \cos(x + 4)$$

9. Which equation is a tangent function with period $\frac{\pi}{3}$, and a vertical displacement -3?

$$A. \quad y = \tan \frac{\pi}{3} x - 3$$

B.
$$y = \tan 3(x - 3)$$

C.
$$y = \tan 3x - 3$$

D.
$$y = \tan 6x - 3$$

Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.

Trigonometry - Functions and Graphs Lesson #8: Transformations of Trigonometric Functions Pt. 2

- 10. The equation $y = \pi \cos(\pi x \pi)$ has a period and a horizontal phase shift to the right, respectively, of
 - A. π and π
 - $B. \pi$ and 1
 - C. 2 and π
 - D. 2 and 1

- 11. Which statement concerning the graph of $y = -4\cos\frac{x}{2} + 2$ is not correct?
 - A. The maximum value is 6.
 - **B.** The period is 4π .
 - C. The amplitude is -4.
 - D. The vertical displacement is 2.

Answer Key

	amplitude	period	phase shift	vertical displacement
a)	1	2.7	# right	3 up
b)	3	4л	# right	0
c)	3	4.7	٥	n/2 down
ď)	1	x 2	n right	۰
e)	2	120*	45° right	4 tap
t)	7	1440*	80° left	1 down

2. a)
$$y = 4 \sin \frac{12}{7} (x + 60^\circ) + 3$$

b)
$$y = 3 \cos \frac{8}{5} \left(x - \frac{2\pi}{3} \right) - 5$$

(Note for a) and b): the value of a can also be negative)

3. a) i) for
$$a > 0$$
, Graph 1 $y = 3 \sin 2\left(x \pm \frac{\pi}{2}\right) - 1$, Graph 2 $y = 3 \sin \frac{1}{2}\left(x + \frac{\pi}{2}\right) + 4$

ii) for
$$a < 0$$
, Graph 1 $y = -3 \sin 2x - 1$, Graph 2 $y = -3 \sin \frac{1}{2} \left(x - \frac{3\pi}{2} \right) + 4$

b) i) for
$$a > 0$$
, Graph 1 $y = 3 \cos 2\left(x + \frac{\pi}{4}\right) - 1$, Graph 2 $y = 3 \cos \frac{1}{2}\left(x - \frac{\pi}{2}\right) + 4$

ii) for
$$a < 0$$
, Graph 1 $y = -3 \cos 2\left(x - \frac{\pi}{4}\right) - 1$, Graph 2 $y = -3 \cos \frac{1}{2}\left(x + \frac{3\pi}{2}\right) + 4$

4.
$$y = 6 \cos \frac{1}{2} \left(x - \frac{5\pi}{4} \right) + 3$$
 5. $y = 5 \sin 2(x + 15^\circ) + 15$

6. a)
$$y = \tan \left(x + \frac{\pi}{4}\right)$$
 b) $y = \tan 2x$

7. a)
$$\{y \mid -4 \le y \le 0, y \in R\}$$
 b) $\{y \mid -2 \le y \le 4, y \in R\}$

b)
$$\{y \mid -2 \le y \le 4, y \in R\}$$

c)
$$\left\{ y \mid -\frac{7}{2} \le y \le -\frac{5}{2}, y \in R \right\}$$
 d) $\left\{ y \mid -a + d \le y \le a + d, y \in R \right\}$

d)
$$\{y \mid -a + d \le y \le a + d, y \in R\}$$