Area Under a Curve
example (1)
Fond the area under $y=x^{2}+2$ from $x=2$ to $x=4$


$$
\begin{aligned}
& y=x^{2}+2 \\
& \int_{2}^{4} x^{2}+2=\left[\frac{1}{3} x^{3}+2 x\right]_{2}^{4} \\
= & \left(\frac{1}{3}(4)^{3}+2(4)\right)-\left(\frac{1}{3} / 2\right)^{3}+2(2 \\
= & 64 / 3+8-8 / 3-4 \\
= & 56 / 3+4 \\
= & 68 / 3
\end{aligned}
$$

$$
\left(\frac{1}{3} x^{3}+2 x+c\right)-\left(\frac{1}{3} x^{3}+2 x+c\right)=\left(\frac{1}{3}(4)^{3}+2(4)\right)-\left(\frac{1}{3}(2)^{3}+2(2)\right)
$$

example (2)
Find the area between $y=\sin x$ and the $x$-axis from $x=\pi / 6$ to $x=\pi / 2$


$$
\begin{aligned}
& =(-\cos \pi / 2)-(-\cos \pi) \\
& =0+\frac{\sqrt{3}}{2} \\
& =\frac{\sqrt{3}}{2}
\end{aligned}
$$

See the last page for why the 'C' has magically disappeared from consideration.
example (3)
Fond the area of the region below $y=4-x^{2}$ and above the $x$-axis.


Solve for $x$-intercepts:

$$
\begin{aligned}
& 0=4-x^{2} \\
& x^{2}=4 \\
& x= \pm 2
\end{aligned}
$$

$$
\begin{aligned}
\int_{-2}^{2} 4-x^{2} & =\left[4 x-\frac{1}{3} x^{3}\right]_{-2}^{2} \\
& =\left[4(2)-\frac{1}{3}(2)^{3}\right]-\left[4(-2)-\frac{1}{3}(-2)^{3}\right] \\
& =(8-8 / 3)-(-8+8 / 3) \\
& =16-16 / 3 \\
& =48 / 3-16 / 3 \\
& =32 / 3
\end{aligned}
$$

Same topic, extra examples:
Area Under a Curve
egl Find the area between the curve of $y=2 x-x^{2}$ and the $x$-axis.


$$
\begin{aligned}
& 0=2 x-x^{2} \\
& 0=x(2-x) \\
& x=0 \quad x=2
\end{aligned}
$$

$$
\left.\begin{array}{l}
\quad \int_{0}^{2} 2 x-x^{2}=\left[x^{2}-\frac{1}{3} x^{3}\right]_{0}^{2} \\
\text { Area }
\end{array}=\left[2^{2}-\frac{1}{3}(2)^{3}\right]-\left[0^{2}-\frac{1}{3}(0)^{3}\right]\right\} \text {-0 }
$$

eq $y^{2}$ Fond. the area under $y=\frac{1}{x^{2}}$ fou $x=2$ to $x=5$

$$
\begin{aligned}
\int_{2}^{5} \frac{1}{x^{2}}=\int_{2}^{5} x^{-2} & =\left[-x^{-1}\right]_{2}^{5}=\left[-\frac{1}{x}\right]_{2}^{5} \\
& =\left[-\frac{1}{5}\right]-\left[-\frac{1}{2}\right] \\
& =-\frac{1}{5}+\frac{1}{2} \\
& =\frac{3}{10}
\end{aligned}
$$

Why is 'C' not important?
For an indefinite integral:

$$
\int 2 x-x^{2}=x^{2}-\frac{1}{3} x^{3}+c
$$

We now have defined values and subtracting them form each other to find an area:

$$
\int_{0}^{2} 2 x-x^{2}=\left[x^{2}-\frac{1}{3} x^{3}+c\right]_{0}^{2}
$$

Substitute 2 and 0 into our integral

$$
\begin{aligned}
& \left(2^{2}-\frac{1}{3}(2)^{3}+c\right)-\left(0^{2}-\frac{1}{3}(0)^{3}+C\right) \\
= & 4-\frac{8}{3}+c-(0-0+c)
\end{aligned}
$$

$=\frac{4}{3}+C-C$ the ' $C$ ' value will

